Cascaded plasmon-plasmon coupling mediated energy transfer across stratified metal-dielectric nanostructures
نویسندگان
چکیده
Surface plasmon (SP) coupling has been successfully applied to nonradiative energy transfer via exciton-plasmon-exciton coupling in conventionally sandwiched donor-metal film-acceptor configurations. However, these structures lack the desired efficiency and suffer poor photoemission due to the high energy loss. Here, we show that the cascaded exciton-plasmon-plasmon-exciton coupling in stratified architecture enables an efficient energy transfer mechanism. The overlaps of the surface plasmon modes at the metal-dielectric and dielectric-metal interfaces allow for strong cross-coupling in comparison with the single metal film configuration. The proposed architecture has been demonstrated through the analytical modeling and numerical simulation of an oscillating dipole near the stratified nanostructure of metal-dielectric-metal-acceptor. Consistent with theoretical and numerical results, experimental measurements confirm at least 50% plasmon resonance energy transfer enhancement in the donor-metal-dielectric-metal-acceptor compared to the donor-metal-acceptor structure. Cascaded plasmon-plasmon coupling enables record high efficiency for exciton transfer through metallic structures.
منابع مشابه
Plasmon‐Mediated Solar Energy Conversion via Photocatalysis in Noble Metal/Semiconductor Composites
Plasmonics has remained a prominent and growing field over the past several decades. The coupling of various chemical and photo phenomenon has sparked considerable interest in plasmon-mediated photocatalysis. Given plasmonic photocatalysis has only been developed for a relatively short period, considerable progress has been made in improving the absorption across the full solar spectrum and the...
متن کاملEnergy transfer across a metal film mediated by surface plasmon polaritons.
Coupled surface plasmon polaritons (SPPs) are shown to provide effective transfer of excitation energy from donor molecules to acceptor molecules on opposite sides of metal films up to 120 nanometers thick. This variant of radiative transfer should allow directional control over the flow of excitation energy with the use of suitably designed metallic nanostructures, with SPPs mediating transfer...
متن کاملExciton-Plasmon Interactions in Metal-Semiconductor Nanostructures
The complementary optical properties of metal and semiconductor nanostructures make them attractive components for many applications that require controlled flow of electromagnetic energy on the nanometer length scale. When combined into heterostructures, the nanometer-scale vicinity of the two material systems leads to interactions between quantum-confined electronic states in semiconductor na...
متن کاملUniversal scaling and Fano resonance in the plasmon coupling between gold nanorods.
The plasmon coupling between metal nanocrystals can lead to large plasmon shifts, enormous electric field enhancements, and new plasmon modes. Metal nanorods, unlike spherical ones, possess a transverse and a longitudinal plasmon mode owing to their geometrical anisotropy. Consequently, the plasmon coupling between metal nanorods is much more complicated than that between nanospheres. For the l...
متن کاملInterplay of plasmon resonances in binary nanostructures
By introducing the difference permittivity ratio η = ( 2 − 0)/( 1 − 0), the Green matrix method for computing surface plasmon resonances is extended to binary nanostructures. Based on the near field coupling, the interplay of plasmon resonances in two closely packed nanostrips is investigated. At a fixed wavelength, with varying η the resonances exhibit different regions: the dielectric effect ...
متن کامل